90 research outputs found

    Noninvasive Vascular Images for Face Transplant Surgical Planning

    Get PDF
    Objective: Face transplantation replaces substantial defects with anatomically identical donor tissues; preoperative vascular assessment relies on noninvasive imaging to separate and characterize the external carotid vessels and branches. The objective is to describe and illustrate vascular considerations for face transplantation candidates. Methods: Novel noninvasive imaging using computed tomography and magnetic resonance imaging over 3 spatial dimensions plus time was developed and tested in 4 face transplant candidates. Precontrast images assessed bones and underlying metal. Contrast media was used to delineate and separate arteries from veins. For computed tomography, acquisition over multiple time points enabled the computation of tissue perfusion metrics. Time-resolved magnetic resonance angiography was performed to separate arterial and venous phases. Results: The range of circulation times for the external carotid system was 6 to 14 seconds from arterial blush to loss of venous enhancement. Precontrast imaging provided a roadmap of bones and metal. Among the 4 patients, 3 had surgical clips, metal implants, or both within 1 cm of major vessels considered for surgery. Contrast-enhanced wide area detector computed tomographic data acquired in the axial mode separated these structures and provided arterial and venous images for planning the surgical anastomoses. Magnetic resonance imaging was able to distinguish between the large vessels from the external carotid systems. Conclusions: Vascular imaging maps are challenging in face transplantation because of the rapid circulation times and artifact from the initial injury, prior reconstructive attempts, or both. Nevertheless, face transplant candidates require high spatial and temporal resolution vascular imaging to determine those vessels appropriate for surgical anastomoses

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Abstract Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.https://deepblue.lib.umich.edu/bitstream/2027.42/146524/1/41205_2018_Article_30.pd

    Evolution of the Color-Magnitude Relation in Galaxy Clusters at z ~1 from the ACS Intermediate Redshift Cluster Survey

    Get PDF
    We apply detailed observations of the Color-Magnitude Relation (CMR) with the ACS/HST to study galaxy evolution in eight clusters at z~1. The early-type red sequence is well defined and elliptical and lenticular galaxies lie on similar CMRs. We analyze CMR parameters as a function of redshift, galaxy properties and cluster mass. For bright galaxies (M_B < -21mag), the CMR scatter of the elliptical population in cluster cores is smaller than that of the S0 population, although the two become similar at faint magnitudes. While the bright S0 population consistently shows larger scatter than the ellipticals, the scatter of the latter increases in the peripheral cluster regions. If we interpret these results as due to age differences, bright elliptical galaxies in cluster cores are on average older than S0 galaxies and peripheral elliptical galaxies (by about 0.5Gyr). CMR zero point, slope, and scatter in the (U-B)_z=0 rest-frame show no significant evolution out to redshift z~1.3 nor significant dependence on cluster mass. Two of our clusters display CMR zero points that are redder (by ~2sigma) than the average (U-B)_z=0 of our sample. We also analyze the fraction of morphological early-type and late-type galaxies on the red sequence. We find that, while in the majority of the clusters most (80% to 90%) of the CMR population is composed of early-type galaxies, in the highest redshift, low mass cluster of our sample, the CMR late-type/early-type fractions are similar (~50%), with most of the late-type population composed of galaxies classified as S0/a. This trend is not correlated with the cluster's X-ray luminosity, nor with its velocity dispersion, and could be a real evolution with redshift.Comment: ApJ, in press, 27 pages, 22 figure

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments
    corecore